Confidence Intervals for the Risk Ratio Using Double Sampling with Misclassified Binomial Data

نویسندگان

  • Dewi Rahardja
  • Dean M. Young
چکیده

We derive three likelihood-based confidence intervals for the risk ratio of two proportion parameters using a double sampling scheme for misclassified binomial data. The risk ratio is also known as the relative risk. We obtain closed-form maximum likelihood estimators of the model parameters by maximizing the full-likelihood function. Moreover, we develop three confidence intervals: a naive Wald interval, a modified Wald interval, and a Fieller-type interval. We apply the three confidence intervals to cervical cancer data. Finally, we perform two Monte Carlo simulation studies to assess and compare the coverage probabilities and average lengths of the three interval estimators. Unlike the other two interval estimators, the modified Wald interval always produces close-to-nominal confidence intervals for the various simulation scenarios examined here. Hence, the modified Wald confidence interval is preferred in practice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

برآورد فاصله اطمینان برای نسبت‌های نزدیک به صفر و یک: یک مطالعه ثانویه مدل سازی

Background and Objectives: When computing a confidence interval for a binomial proportion p, one must choose an exact interval that has a coverage probability of at least 1-α for all values of p. In this study, we compared the confidence intervals of Clopper-Pearson, Wald, Wilson, and double ArcSin transformation in terms of maintaining a constant nominal type I error. Methods: Simulations w...

متن کامل

Comparison of five introduced confidence intervals for the binomial proportion

So far many confidence intervals were introduced for the binomial proportion. In this paper, our purpose is comparing five well known based on their exact confidence coefficient and average coverage probability.

متن کامل

Binary Regression With a Misclassified Response Variable in Diabetes Data

Objectives: The categorical data analysis is very important in statistics and medical sciences. When the binary response variable is misclassified, the results of fitting the model will be biased in estimating adjusted odds ratios.  The present study aimed to use a method to detect and correct misclassification error in the response variable of Type 2 Diabetes Mellitus (T2DM), applying binary ...

متن کامل

Metaprop: a Stata command to perform meta-analysis of binomial data

BACKGROUND Meta-analyses have become an essential tool in synthesizing evidence on clinical and epidemiological questions derived from a multitude of similar studies assessing the particular issue. Appropriate and accessible statistical software is needed to produce the summary statistic of interest. METHODS Metaprop is a statistical program implemented to perform meta-analyses of proportions...

متن کامل

An exact confidence set for two binomial proportions and exact unconditional confidence intervals for the difference and ratio of proportions

An exact joint confidence set is proposed for two binomial parameters estimated from independent samples. Its construction relies on inverting the minimum volume test, a two-dimensional analogue of Sterne’s test for a single probability. The algorithm involves computer-intensive exact computation based on binomial probabilities. The proposed confidence set has good coverage properties and it pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011